

Nano Strain Gauge

The Invisible Touch for Precise Force Sensing

Description	Features
<p>Potentially the smallest commercially available strain sensor in a wheatstone bridge configuration. Measures forces where no space for conventional techniques are available. The sensor can either be printed directly onto your material or subassembly, or be integrated within a thin film.</p> <p>The size of a full wheatstonebridge can be reduced to a ultimately area of only a few micrometres. This enables the possibility to make literally any material or subassembly force-sensitive. digid's sensor delivers exceptional performance with a high gauge factor flexibility for a wide range of applications.</p> <p>The nano strain gauge, makes force measurements possible on devices where is was not accessible before. Enabling new oportunities for automation and data gathering for e.g. predictive maintenance.</p>	<ul style="list-style-type: none"> • High Sensitivity (e.g. 400 N/V on MEMS) • Wheatstonebridge footprint: $100 \times 100 \mu\text{m}^2$ • Adjustable Impedance from $\text{k}\Omega$ to $100\text{M}\Omega$ • High impedance strain gauge enables usage of ultra thin wires due to negligible wire resistance • Optimized for low power applications • Wide temperature range • Thermal output: $\pm 1 \mu\text{strain}/\text{K}$ uncomepsated • Long term stable • Vector Force Components customizable • Printable on various components • Available as full/ half/ quarter bridge configuration • Fully encapsulated sensor and traces
Application flexibility Ideal for tailored solutions in multiple industries, including <ul style="list-style-type: none"> • medical • automotive • aerospace • industrial automation 	

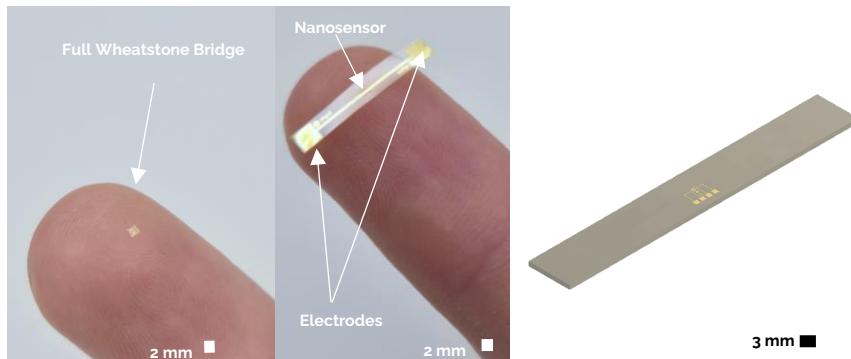


Figure 1: Polyimide based strain gauges with the digid nanosensor technology. **Left:** Wheatstone bridge sensor in $0.5 \times 0.8 \text{ mm}^2$ size and single stain gauge sensor (**middle**). **Right:** Custom made force sensor on a metallic subassembly.

General Specifications	
Accuracy	1%
Precision	nN
Resolution	Customer specific (depends on sampling rate)
Sensitivity	[V/N]
Reliability	>> 1e9 bending cycles
Material Substrate	Si-based, Metals, Polymers, Ceramics, Glass
Base Resistivity	[Ω]
Operating Temperature	[°C]
Temp Effect on Output	[$\mu\text{e}/\text{K}$]
Excitation Voltage	[V]
Wiring per singel sensor	2 wires, 50 AWG
Wiring per Wheatstone Bridge	4 wires, 50 AWG
Contact	Soldering, Conductive Epoxy, wireonding
Gauge Factor	>10
Individual Sensor footprint	[nm^2]

digid GmbH

Robert-Koch-Str. 30 a

55129 Mainz

Germany

www.digid.com

info@digid.com

©2025 digid GmbH. All rights reserved

All sample data are provided on an "AS IS" Basis as stipulated in the NDA.

All provided information is proprietary and confidential.