JavaScript is currently disabled.Please enable it for a better experience of Jumi. Ekkono: Svensk AI, men inte deep learning

EMBEDDED WORLD 2019 Många AI-tillämpningar klarar sig med enklare algoritmer än djupa neuronnät. Svenska Ekkono Solutions resurssnåla AI-algoritmer både körs och programmeras i styrkretsar.

De placeras där många AI­ system bäst hör hemma – i ändnoder.

Jon
Lindén

– Vissa saker passar jättebra för cloud, erkänner vd Jon Lindén.

– Men om du ska fatta snabba beslut och titta på högfrekvent sensordata med tusentals samp­lingar per sekund, eller om du behöver inlärning individuellt för just den här lägenheten, for­ donet eller tågsetet – då är edge oslagbart.

”TÅGSETET” SYFTAR på företagets demo på mässan. Ett Briolok med sensorer loggar sin resa på en tågbana. Loket lär sig hur ett varv i banan ser ut uttryckt i ac­celerometeravläsningar.

När Jon Lindén lägger om spårväxeln larmar loket – något har förändrats i sensorutslagen.

Så fungerar företagets prediktiva underhåll: först lär sig algoritmen hur normaldrift ser ut, därefter håller den utkik efter avvikelser. Indata hämtas från sensorer – accelerometrar, temperaturgivare, vågar, ampe­remätare, et cetera. Maskininlär­ning hittar de kombinationer av avläsningar som är relevanta att hålla koll på.

Kapaciteten hos en Cortex M4­-styrkrets räcker både för användning och träning.

Första kund var svenska industriteknikjätten Alfa Laval, som får larm när värmeväxlare behöver rengöras. Beroende på miljön kan rengöringsintervallet variera mellan veckor och år.

ALLA EKKONOSYSTEM kör i princip samma algoritm, men alla instanser av algoritmen blir unik i sina parametrar eftersom trädgårdar ser olika ut, bilar körs på olika sätt, motorer används i olika miljöer och smarta hem står i olika klimatzoner.

Ekkonos system tränas kontinuerligt att känna igen vad som är normala driftsförhållanden för att sedan kunna reagera när det uppstår en avvikelse.

En tillämpning kan vara att styra klimatinställningarna i ett smart hem. Då är väderprogno­sen del av indata. En annan är batteristyrning i elfordon för att optimera räckvidd, vilken beror på hur tungt den är lastad, vem som kör, och utetempe­raturen, som påverkar hur mycket el som går till värme och ventilation.

Ekkono har avgränsat sig till maskinlärning i ändnoder. Och det enda som företaget levererar är matematiken i form av mjukvara och utvecklingsverktyg. Resten gör kunden.

– Vi löser predictive mainte­nance åt er, säger vi. Ni sitter på domänkunskapen, och vi kan tillhandahålla verktygen. Här, snickare, får du din cirkelsåg, nu ska vi bygga något som passar bra för just era syften.

Kunden kopplar själv upp sin IoT mot en molntjänst, tar hem data och bygger en funktion kring intelligensen. Om det behövs mer hjälp kan Ekkono hänvisa bland annat till svenska konsulten Cybercom.

Företaget utgår från resultat på högskolan i Borås. Där forskar Rikard König om prediktiv modellering och optimerad ma­skininlärning. Jon Lindén kom till högskolan med uppdrag att hitta kommersialisering. Med sin bakgrund inom telekom föreslog han IoT som tillämpning.

De grundade Ekkono med Anders Alneng, Peter Alm och Joakim Andersson. Utveckling­ en sker i Varberg och personalen är i stor utsträckning rekryterad bland högskolestudenter.

Det finns enligt Jon Lindén ingen riktig konkurrent. Det finns öppen källkod, men med 20–200 gånger sämre prestanda.

– Konkurrensen är uteslu­tande gör­-det-självare.

Hur länge innan det finns en konkurrent?

– Absolut kan andra komma kapp! Det här är inte bara teknikinnovation utan lika mycket affärs­innovation – hur vi pake­terar, vilka vi samarbetar med och hur vi levererar via våra lösningspartners och Amazon. För varje kund vi vinner bygger vi en star­kare marknadsposition.

– Vi kommer att få konkur­renter. Fördelen då – om vi
är marknadsledare – är att vi slipper stå för hela marknadsfö­ringskostnaden själva.

Företaget grundades 2016. Under det senaste halvåret har ABB, Volvo och ytterligare fyra ej offentliga svenska storbolag blivit kunder. Företaget hade knackat på många dörrar paral­lellt och plötsligt öppnades flera samtidigt.

– När vi började trodde vi att konsumentmarknaden skulle vara mest mogen. Men det var i industrin – inom automation, kommunikation, fordon – som det fanns pengar och där är man mycket mer på hugget.

Är inte mindre bolag ännu mer på alerten?

– Också vi trodde att stora bolag skulle vara svåra. Men de har budgetar för AI, medan medel­stora bolag mest utgår från vad de stora beställer.

Varför är inte AI i edge en större grej ännu?

– Jag tror det är en mognads­fråga. Vi tillhör den andra vågen som gör AI mer lättillgängligt och lättanvänt. Sedan kom­mer det att bli en självklarhet, en commodity, att göra edge machine learning. Och dessutom ett väldigt stort marknadsseg­ment.

Gör maskininlärning
på Cortex M4

Träning av så kallade djupa neuron­nät kräver timmar i grafikkort. Gigan­tiska nät matas repetitivt med stora datavolymer och justerar parametrar tills de konvergerar.

Ekkono tränar parallellt ett antal betydligt enklare AI­-modeller (neuronnät, random forests, regres­sionsträd, linjär regression) och det bäst lämpade väljs ut. Träning sker även under drift inkrementellt med minimala justeringar för varje sensoravläsning.

Är de heltäckande?

– Ganska. De fyller behoven inom de områden som vi verkar, säger Jon Lindén.

Linjär regression är möjligen anakronistiskt att kalla ”maskininlärning” eftersom det skapades på 1800­-talet innan det fanns maskiner med inlärningsförmåga.

Samtidigt är det en bra illustration av att det finns AI­-problem som löses med betydligt enklare medel än deep learning – även om Ekkono utan omsvep erkänner att det fått draghjälp av AI­-hajpen kring djup maskininlärning.

– Absolut! Ingen slänger på luren om man nämner machine learning och Internet of Things.

Komplex mönsterigenkänning för bild och ljud, som djupa neiuronnät gör, ligger utom räckhåll för Ekkonos enkla algoritmer. 

Men det skulle gå att bygga system som använder båda, där utdata från ett djupt nät – exempelvis en klassifice­ring av ett föremål i bild – blir indata till Ekkonos algoritm.

Det som Ekkono levererar konkret är ett C++­-bibliotek, plus program­gränssnitt till den som hellre vill använda Python eller C#, samt en utvecklingsmiljö med ytterligare verktyg för att implementera maskininlärning.

I praktiken hänger ofta anställda och konsultpartners just nu över axeln på kunder som implementerar, men målet är sprida kompetensen till kunden och att Ekkonos inkom­ster ska komma från licensering.

Prenumerera på Elektroniktidningens nyhetsbrev eller på vårt magasin.


MER LÄSNING:
 
KOMMENTARER
Kommentarer via Disqus

Rainer Raitasuo

Rainer
Raitasuo

+46(0)734-171099 rainer@etn.se
(sälj och marknads­föring)
Per Henricsson

Per
Henricsson
+46(0)734-171303 per@etn.se
(redaktion)

Jan Tångring

Jan
Tångring
+46(0)734-171309 jan@etn.se
(redaktion)